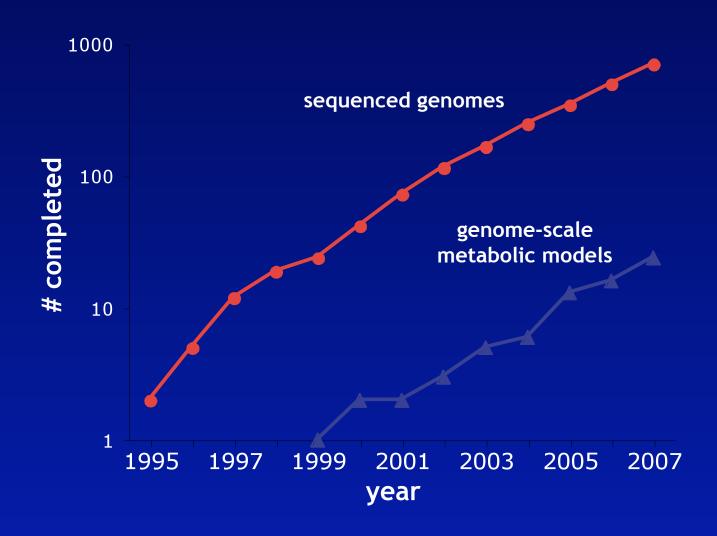
1. <u>Analysis and Redesign of Proteins and Biological</u> <u>Networks</u> Costas Maranas / The Pennsylvania State University

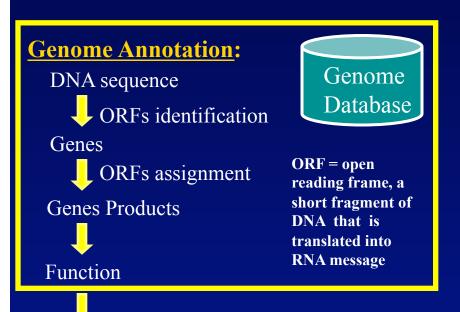
- Biological Networks

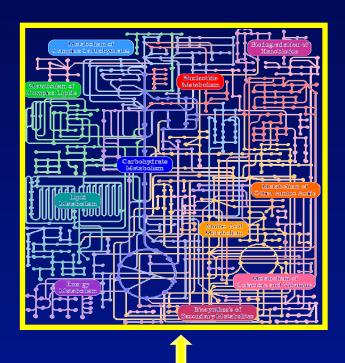
- Development of computational workflows for reconstructing the complete metabolic repertoire of microbial and plant systems (i.e., Mycoplasma genitalium, Methanosarcina acetivorans, etc.)
- Automated testing/curation of metabolic models for completeness and correctness by using multiple types of data (i.e., network connectivity, gene essentiality experiments, metabolomic and transcriptomic data).
- Construction of algorithmic tools and mapping databases that allow for metabolic flux analysis (MFA) by tracking the fate of labeled atoms through metabolic networks.
- Development of computational tools for identifying all possible engineering strategies (i.e., knock in/out/up/down's) leading to increased production of a targeted molecule (e.g., a biofuel) using a microbial or plant production system.

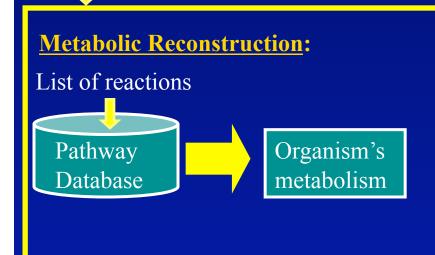
Genome-scale metabolic models vs. sequenced genomes

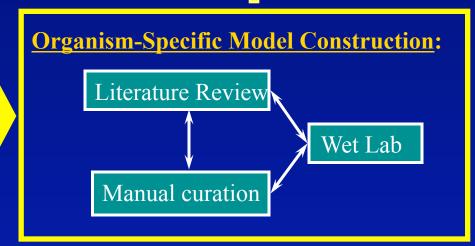


Metabolic Reconstruction Technology

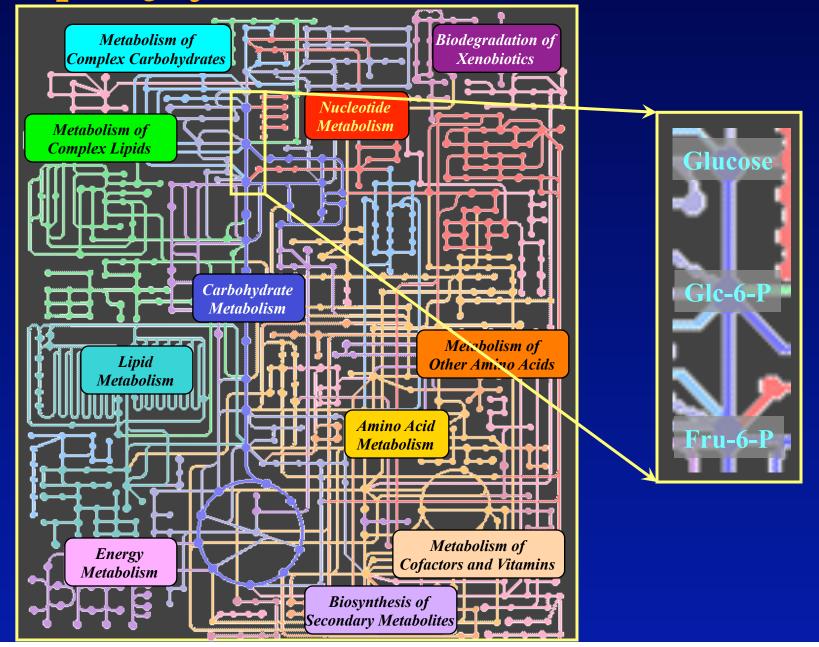








Complexity of Metabolic Networks

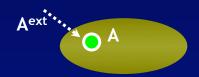


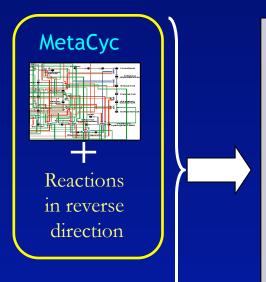
GapFill: Filling Connectivity gaps in model

Reversing Directionality

Addition of Missing reactions

Addition of Uptake route





Model

minimize (# of rxn additions and direction reversals)

subject to

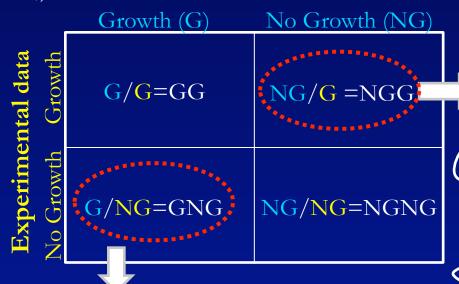
- Network stoichiometry
- Net production term > 0, for each NPM
- Bounds on fluxes

GrowMatch: Restore consistency with G/NG experiments

Model Testing: Contrast model (in silico) predictions

vs. experimental (in vivo) gene deletion data (e.g., Keio Collection (Baba et al.

Model Prediction 2006))



Model under-predicts metabolic capabilities

• Absence of relevant reactions

Fix NGG add rxns > GG Fix GNG suppress rxns NGNG GG NGG

NGNG **→**GNG

Resolution of inconsistent experiments...

while avoiding changing others that are already correct

Model over-predicts metabolic capabilities.

- Presence of extra/wrong reactions
- Down-regulation of rxns in exp. conditions

Model modifications must be performed while taking into account entire model and all experimental data

M. genitalium model iPS189

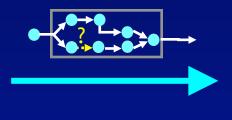
"Minimal gene" model organism

Comparison of M. genitalium with
 H. influenzae
 overlap of 256 genes
 (Mushegian & Koonin, 2000)

(Collaboration with J.C. Venter Inst.)

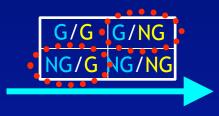
- Global transposon mutagenesis
 382 essential genes our of 482 ORFs (Glass et al. PNAS 2006)
- (Genome transplantation) (Lartigue, et al. Science 2007)
- Synthetic genome construction (Gibson, et al. Science 2008)

GapFind & GapFill (Satish Kumar, et al., BMC Bioinformatics, 2008)



reconnected 25 metabolites added 22 rxns & GPR for 8 genes

GrowMatch
(Satish Kumar and Maranas
PLoS Comp Biol, accepted)



increased agreement with *in* vivo gene essentiality data from 79% to 87%

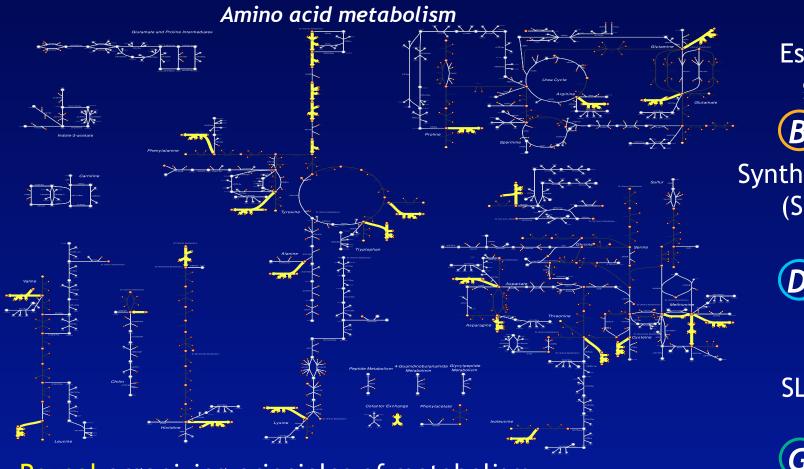
189 (39%) ORFs

*i*PS189 contains: 262 reactions

274 metabolites

(Suthers, et al, PLoS Comp Biol)

Synthetic lethality- Definition



- Reveal organizing principles of metabolism
 & patterns of dispensability
- Characterize genes/rxns w.r.t. their degree of essentiality
- Provide additional layer for curating metabolic models

Essential genes

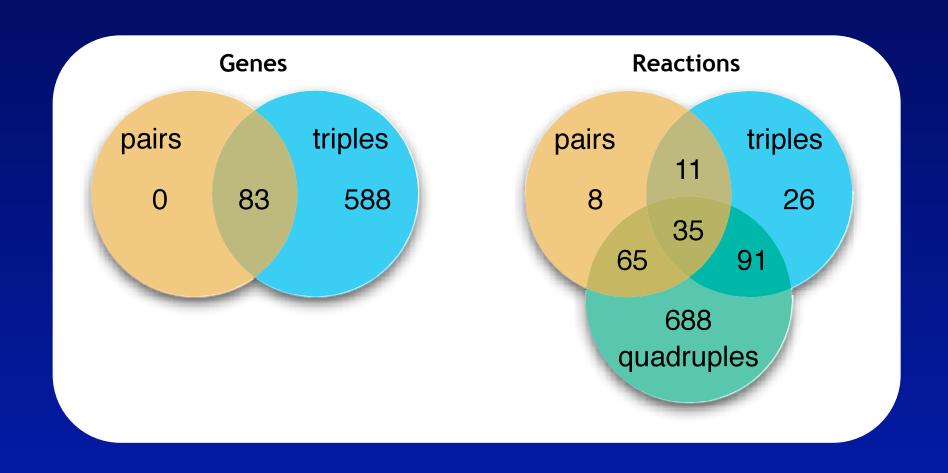
Synthetic lethal (SL) pairs

SL triples

SL quadruples

Participation in higher order SLs

A gene/reaction involved in a SL pair can also participate in SL triples or even higher order SLs



Targeted enumeration of SLs

Direct Enumeration: Chose order of synthetic lethals = n

(e.g., n=2 synthetic lethal pairs, n=3 synthetic lethal triplets, etc.)

Outer Problem

Find synthetic rxn eliminations negating biomass formation

Inner Problem

Adjust fluxes to find the max biomass production potential of the network Minimize Biomass flux (over sum of rxn eliminations = n)

s.t.

Maximize Biomass flux (over fluxes)

S.t. Network connectivity

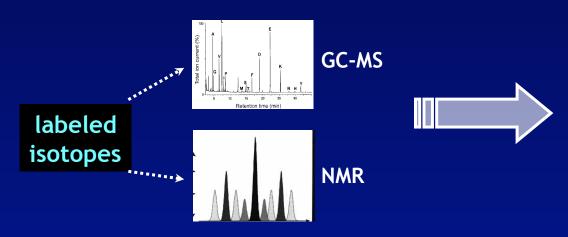
Uptake/secretion
conditions

No flow in eliminated rxns by outer problem

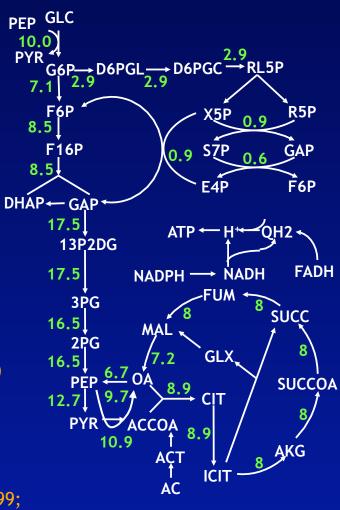
If max biomass < cutoff ⇒ Report synthetic lethal

Elucidating fluxes in metabolic models (MFA)

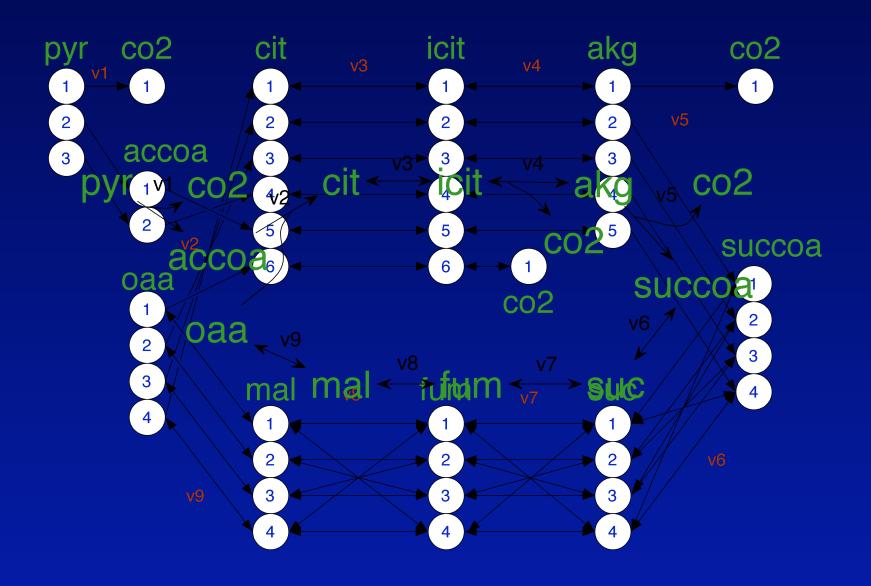
Principle: Deconvolute fluxes in metabolic networks based on distribution of labels in measured metabolites



- ☐ Isotopomer analysis using GC/MS
 (Park et al. 1997; Christensen & Nielsen 1999; Fischer & Sauer 2003)
- ☐ Isotopomer analysis using NMR spectra (Marx et al. 1996; Schmidt et.al. 1999)
- ☐ Computational models for flux elucidation
 (Zupke et al. 1994; Wiechert & Graff 1996; Wiechert et.al. 1996,1999;
 Mollney et al. 1999; van Winden et al. 2002; Antoniewicz et al. 2006,2007)
- ☐ Optimization algorithms
 (Ghosh et al. 2004; Fiascos et al. 2004; Phalakornkule et al. 2001)



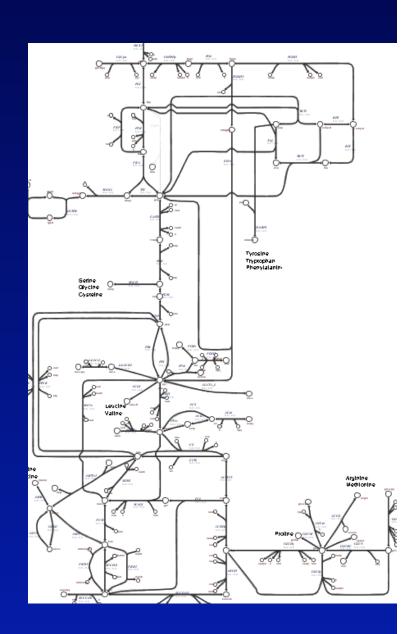
Atom transition view of the TCA cycle



Isotopomer Mapping Model

Suthers et.al., Metab Eng 2007

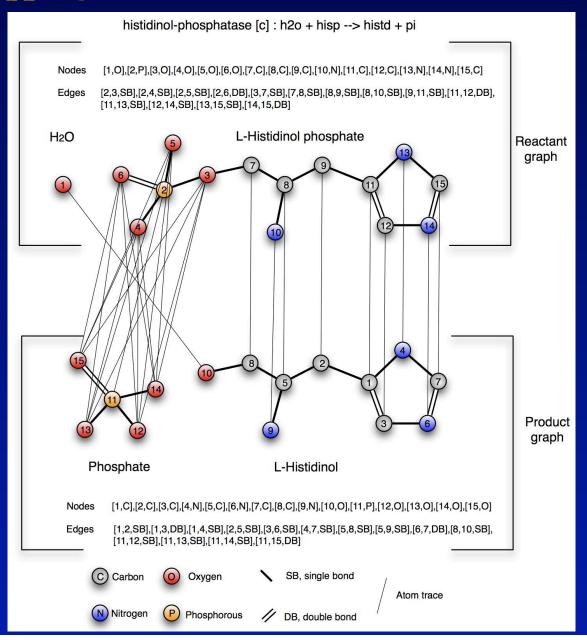
- E. coli metabolism
- Includes 238 reactions, 184 metabolites, 17,346 isotopomers
 - Glycolysis
 - TCA cycle
 - Pentose phosphate pathway
 - Anaplerotic reactions
 - Amino acid biosynthesis/ degradation
 - Oxidative phosphorylation
- Balances on cofactors such as NADH, NADPH, and ATP
- Detailed biomass flux that drains the proper proportion of precursor metabolites



Genome-scale isototope mapping model

Atom mapping procedure

- 1. Identification of metabolites with unchanging labelings and elucidation of recurring reaction motifs
- 2. Generation of reactant and product molecular graphs
- 3. Construction of atom mappings between reactant and product graphs
- 4. Automated curation to retain correct atom mappings based on reaction chemistry
- "Seamless" integration with genome scale models



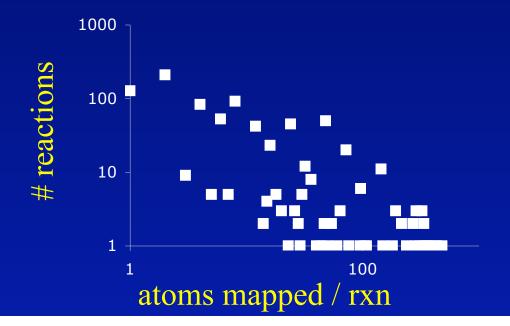
Genome-scale isotope mapping model

(based on iAF1260 E. coli model)

90,068 atoms traced in 2,077 reactions

Atoms traced:		<u>Isotopomers</u>
C:	49,539	C: 8.34 x 10 ⁹³
0:	29,061	O: 1.61 x 10 ⁶⁰
P:	3,280	N: 2.58 x 10 ⁷
N:	2,386	P: 10,006
S:	409	S: 4,091
	5,393other non-hydrogen atoms	

(Ag, As, Ca, Cd, Cl, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Se, W, Zn, and halogens)

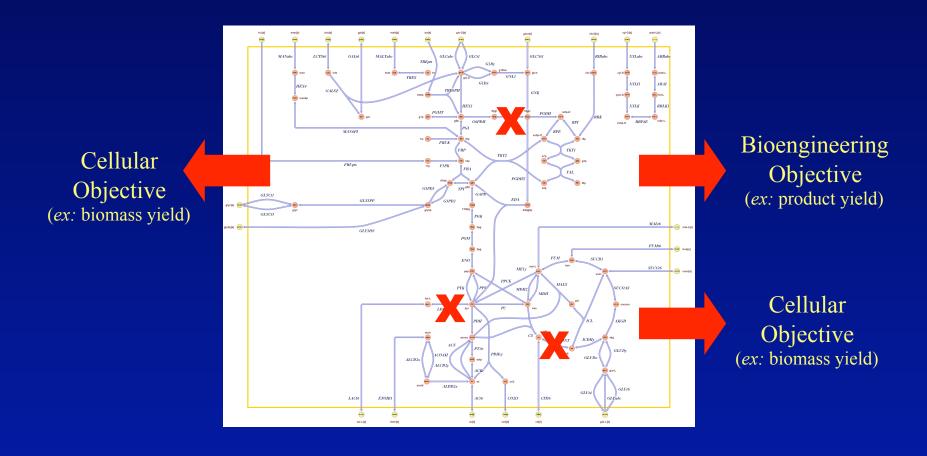


Total complexity: ∼10¹⁸⁰ isotopomers

→ Elemental Metabolite Units (EMU) to activate only part of model consistent with labeling

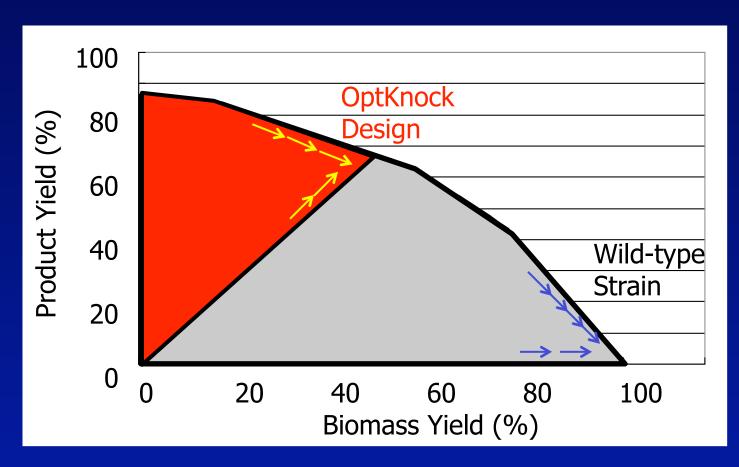
OptKnock methodology (Burgard et al, Biotech Bioeng, 84, 647-657, 2003)

Computational Method to design biocatalysts that try to **couple** biomass with product formation



Graphical Illustration

Trade-off plot between biomass and product formation



Idea: Constraint phenotypic space so as max biomass yield brings about a high product yield

OptKnock bilevel optimization framework

Outer Problem:

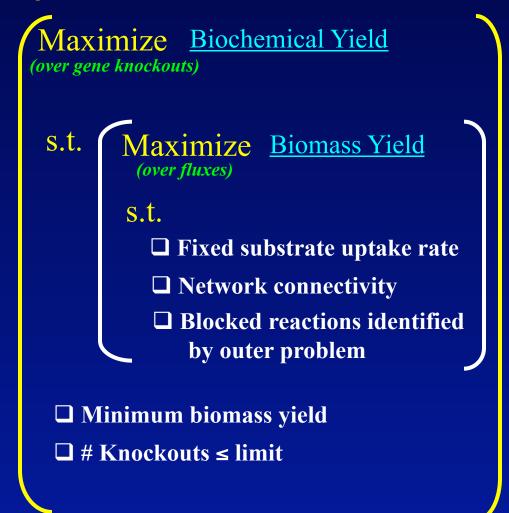
adjust knockouts

- → optimize bioeng. objective
 - Max. 1,3-propanediol yield
 - Max. lactate yield

Inner Problem:

adjust reaction fluxes

- → optimize cellular objective
 - Max. biomass yield
 - Min. metabolic adjustment
 - Max. ATP yield



- Burgard, A.P., Pharkya, P., and C.D. Maranas (2003), "OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization," *Biotechnology and Bioengineering*, 84, 647-657.
- Pharkya, P., Burgard, A.P., and C.D. Maranas (2003), "Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock," *Biotechnology and Bioengineering*, 84, 887-899.

Computational strain design

Existing Strategies:

METAOPT (Hatzimanikatis et al. 1996)

OptKnock OptStrain (Burgard et al. 2003)

(Pharkya et al. 2004) OptGene (Patil et al. 2005)

OptReg (Pharkya et al. 2006)

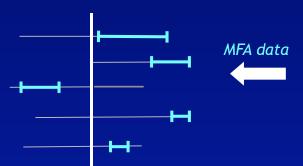
(Lee et al. 2007)

MFSSCOF

Limitations:

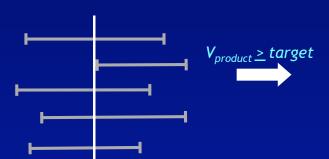
- Generate one "redesign" at a time
- Use of surrogate objective functions (e.g., max biomass or min MOMA)
- No direct use of MFA or other flux data

Wild-type flux ranges (with MFA data)



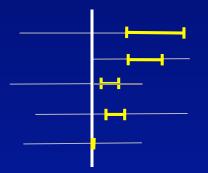
 $Min / Max v_i$ MFA data s.t. Stoichiometry Uptake

Wild-type flux ranges (without MFA data)



 $Min / Max v_i$ **s.t.** Stoichiometry Uptake

Flux ranges required for overproduction



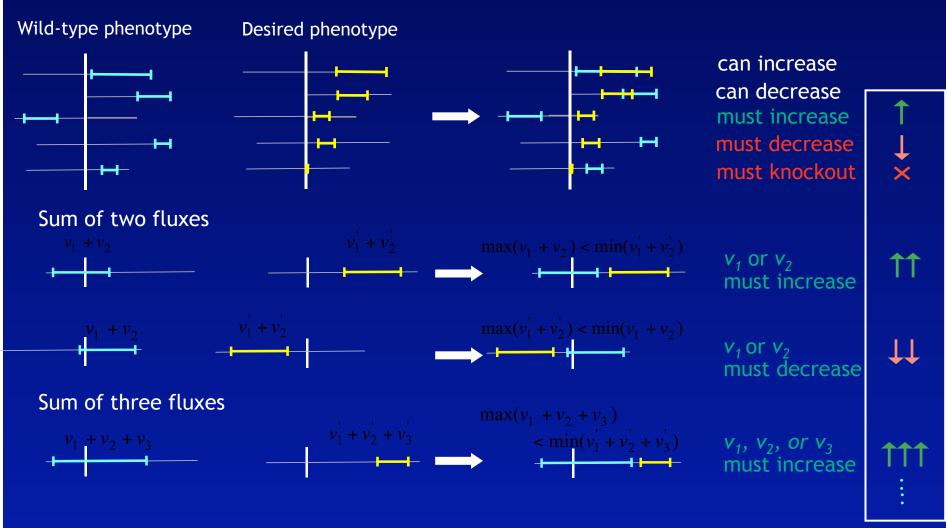
 $Min / Max v_i$ Stoichiometry s.t. Uptake V_{product} <u>></u> target

Suthers et al. Met. Eng. (2007)

Flux range classifications (MUST sets)

Key Idea:

Identify all individual reactions and combinations thereof whose total flux value *MUST increase*, *decrease or be knocked out* to meet a newly imposed production target

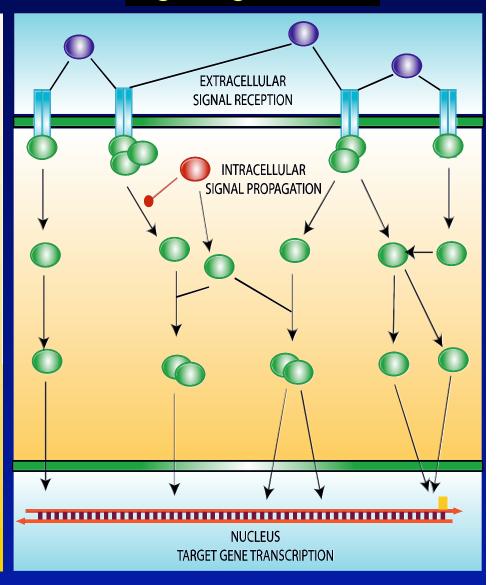


Networks...

Metabolic Networks

S7P FADH

Signaling Networks



http://doegenomestolife.org

1. <u>Analysis and Redesign of Proteins and Biological Networks</u> Costas Maranas / The Pennsylvania State University

- Protein Design

- Computational identification of mutation(s) leading to improved enzymatic function (i.e., P450 small alkane oxidation, cellulases)
- → Substrate/cofactor binding calculations at the ground state
- → Estimation of energy barriers along reaction coordinate
- → Transfer of binding/active to a new protein scaffold
- → Derivation of scoring functions for protein library design

2. Current HPC Requirements

(see slide notes,

Architectures: Linux cluster

Compute/memory load: 4 to 200 hrs / up to 10 GB

Data read/written: less than 1GB

- Necessary software, services or infrastructure: In-house developed software IPRO,
 OptGraft, GapFill, GrowMatch, OptKnock, etc. and commercially available codes include CPLEX, CONOPT, CHARMM, Gaussian03
- Current primary codes and their methods or algorithms: Primary codes rely on algorithms for solving MILP and NLP optimization and combinatorial graph algorithms. Parallelism is currently handled by manually seggregating computing tasks to different computing nodes
- Known limitations/obstacles/bottlenecks: NP-hard nature of underlying mathematical problems. Both compute time and memory can be limiting

3. HPC Usage and Methods for the Next 3-5 Years

(see slide notes)

- Upcoming changes to codes/methods/approaches: As size and complexity of biological networks increases this will tax the computational performance of the analysis, curation and redesign tools
- Changes to Compute/memory load: 300 hrs / 30 GB+
- Changes to Data read/written: increase, but remain < 1GB
- Changes to necessary software, services or infrastructure: use of decomposition methods; new parallelizable versions of solvers
- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.

4. Summary

- What new science results might be afforded by improvements in NERSC computing hardware, software and services?
 - -Ability to perform flux elucidation in genome-scale metabolic reconstructions including plant systems and communities
 - Global identification of strain optimization strategies
 - -- De novo protein design
- Recommendations on NERSC architecture, system configuration and the associated service requirements needed for your science
- General discussion